Design verification trends and role of emulation

Posted on Updated on

Sanjay Gupta, senior director of R&D, Mentor Emulation Division, Mentor, presented on the design verification trends and role of emulation.

Mentor2Verification needs are expanding beyond traditional functional verification. SoC power analysis, coverage closure and DFT validations are critical. Vertical market segment focus is crucial as verification needs are different for different verticals. Verification teams are global teams. Veloce platform addresses the modern verification challenges.

Talking about the design trends, ~31 percent of designs use over 800 million gates and ~20 percent use over 500 million gates.Next, 72 percent of designs contain embedded processors, and 49 percent designs contain two or more processers, while 16 percent designs have eight or more processors.

As for ASIC/IC completion to the original schedule, 61 percent designs were behind schedule in 2014, which increased to 69 percent during 2016. The number of required ASIC/IC spins before production had become seven spins or more in 2016.

Regarding verification trends, as for more design engineers vs. verification engineers, design engineers were growing at CAGR 3.6 percent, while verification engineers were growing at CAGR 10.4 percent, from 2007-2016. The ASIC/IC verification engineers were spending 39 percent of their time at debugging, 22 percent each at creating test and running simulation, and testbench development, and 14 percent time in test planning.

SystemVerilog was a clear leader at the ASIC/IC verification language adoption, while Accelera UVM was a clear leader at the ASIC/IC testbench methodology adoption trends.

In power and coverage, 72 percent more designs wre actively managing power in 2016 as against 59 percent in 2007. Among the power intent trends, the UPF 2x was a clear leader among notations used to describe power intent. Functional coverage is just nearly on par with code coverage, followed by assertions and constrained-random simulation, as far as the ASIC/IC dynamic verification trends are concerned.

Challenges for verification include larger, more complex chips, as well as the increasing software content. Transistor count for select ICs will likely reach 15 billion gates by 2022.

Vertical segments are facing constant innovation. In networking, SDN emergence is driving complexity, size, and port count. There is an increased importance of software. Networking is driven by Big Data, cloud and mobility.

Safety is critical verification for automotive design. Veloce delivers the functional safety verification. Emulation has moved to virtualization with Veloce2. Data-center friendliness and enterprise-level usage are prime. Veloce Strato has accelerated and moved on to the application age, and has a vertical market focus.

Crystal chip is the brain of the Veloce emulation platform. A chip is designed exclusively for emulation: fast compile and efficient, full visibility. The chip, system and software are architected together to optimize the emulation capabilities and productivity. The Veloce Strato offers the lowest cost of ownership.

Veloce power app offers low-power verification at SoC level where power controls come from the application software, handles large SoC (RTL/Gate) with full visibility, performs complete verification (e.g. OS boot) and shows accurate power numbers based on real switching activity.

You can also do low power verification with Veloce. There is broad UPF 2.x support and UPF 3.0 support is planned by the end of 2017. Veloce coverage app has comprehensive SVA assertion support, SV functional coverage, code coverage, standard UCDB support and merged with simulation UCDB, and flow to enable XML merge with other platforms.


Veloce structured around verticals

Posted on

Anoop Saha, Mentor, did a presentation on Veloce vertical solutions at the Emulation Conference in Bangalore.

MentorVeloce solutions are used across networking, storage, multimedia, mobile, CPU, automotive and military aeronautics. Veloce is structured around verticals to be segment focused, identify and address segment specific challenges, and identify gaps early on.

Veloce solutions are connecting the DUT to the external stimulus. iSolve speed adaptors connect real-life systems with the emulator. The Virtualab peripherals — VirtuaLab is the software representation of a speed adaptor. The Veloce transactor library – Veloce compatible verification IP. Transactors (VTL) to integrate with users UVM testbench and lower the abstraction layer.

In networking, for instance, the network switch is driving complexity. There is shift to SDN driving chip size and high port counts. Next, 5G is also driving new technology
and standards. Veloce for networking is offering solutions on top of core emulation platform. The verification flow is expanding to include Lab system validation. As of now, SDN is said to be creating a methodology shift. Mentor is said to be the only vendor with a complete offering.

Verification can no longer ignore firmware. Emulation enables earlier firmware development. Software debug is done with Codelink. The Veloce power app is used for broad base analysis. Veloce also offers complete solution for multimedia.

There has also been an industry shift from spec to benchmark. Many new apps target benchmarks for mobile devices. Examples are the AnTuTu benchmark, Geekbench for CPU and GPU benchmark, GFXBench, a GPU graphics centric benchmark, Android smartphone and tablet benchmark, etc.

Emulation challenges 5G and beyond

Posted on Updated on

Mentor, A Siemens Business, held a one-day conference on emulation in Bangalore and Hyderabad. I am thankful to my friends, Veeresh Shetty and Montu Makadia, for helping me attend this conference.

Shankar Bhat, Director, Engineering, Qualcomm India Pvt Ltd, in his keynote, titled 5G and Beyond – Emulation Challenges, said that a shrinking time to market, and stringent DPPM requirements drive the future of verification. Verification scope will extend from just hardware verification to software enablement. The emulation footprint in verification will significantly improve.
He added that mobile has been making a leap every 10 years. Today, it is redefining everything by creating the connectivity fabric for everything and bringing new levels of on-device intelligence. The long-term vision is to transform everything through intelligent connected platforms.

There is likely to be $12 trillion worth of 5G-related goods and services in 2035. Mobile is driving technology nodes and innovation. Verification focus has expanded from functionality to coverage to performance, on to power to yield and DPPM (defective parts per million). There is an over 30 percent NRE (non-recurring engineering) cost on design verification and emulation.

Post silicon validation and software testing time has been shirking. The post silicon test content, and software need to be fully validated before silicon arrival. Here, emulation plays a significant role in software readiness.

Regarding the key verification challenges, these are:
* Increased complexity: Test counts have increased, and there are much complex power structure and power domains. Also, there are challenging performance scenarios.

* Long simulation time: Simulator efficiency is not scaled. It is not able to complete all verification before tape out.

* Software enablement: Software expects fully verified design and settings.

* Customer enablement and DPPM reduction.

Emulation advantages
Emulation has several advantages. It has significantly faster run time, 1000X+ compared to simulation. It mimics hardware and closure to silicon. There is quick test portability between platforms.

Emulation will play significant role in design qualification, in both pre- and post-silicon phases. Software enablement will help achieve faster time-to-market. The challenges faced by emulation are a high NRE cost, limited debug capability, compilation time is still high, there are limited power verification capabilities. There are higher hardware costs as well in gate level verification, as it is difficult to fit the full SoC into the FPGA.

Emulation will play a significant role in hardware and software co-simulation. Tool portability is key. Verification will use multiple tools and flow. There will be the interpretability of tests, and data will be critical. EDA companies need to develop cost-effective emulation platforms.

Earlier, welcoming the audience, Ruchir Dixit, Technical Director-India, Mentor, said that the status quo is uncomfortable. He compared the cost of laying a metro network in Bangalore, which can cost between Rs. 8,000-14,000 crores. For emulation, while, it was expensive, it was about time that developers got used to it.

Engineering analytics gaining momentum in India: MathWorks

Posted on Updated on

MathWorks, founded 1984, is a global software company with headquarters in Natick, Massachusetts, USA. Engineers and scientists worldwide rely on products – MATLAB, the language of technical computing, is a programming environment for algorithm development, data analysis, visualization, and numeric computation.
Simulink is a graphical environment for simulation and Model-Based Design of multidomain dynamic and embedded systems.

MathWorks produces nearly 100 additional products for specialized tasks such as data analysis, image processing, control design, wireless and radar.

K RaoKishore Rao, MD of MathWorks India, said that engineering analytics is gaining momentum in India. The data analytics space is actually very strong. There is an increased use of embedded analytics. Customers want to have analytics happening on the cloud as well as on the device.

“A recent trend is to have data analytics integrated with simulation; to take the insight from data and build better and smarter products using simulation. MathWorks is uniquely positioned as we have an integrated solution with data analytics and model-based design. With this you are really driving more efficiency into your products and business. This is happening across the industry, eg, automotive, industrial automation. Some companies are also talking of having a digital twin.

“Today, engineers are creating smarter and more efficient products. Also, they are focusing on predictive maintenance to improve the reliability of the products. Therefore, you are able to drive the maintenance cycles well in advance. With the growing number of sensors on products, predictive maintenance is a key focus for companies to leverage the data from the sensors. Some also call this sensor analytics.

MathWorks has a strong focus towards academia, and works with engineering institutes across India. Rao added: “Today, over 1,200+ engineering colleges in India use our products. These include IITs, NIITs, and several state engineering colleges.”

MathWorks offers a ‘Campus Wide license’ to institutes which opens up access to the tools to all faculty and students in classrooms, labs, across engineering, science, business, and other disciplines to use MATLAB and Simulink for data analytics, model-based design of embedded and cyber-physical systems, and many other technology areas. This will enable improved analysis and problem-solving skills through hands-on, project-based learning; improved understanding of underlying concepts and theory; and leading-edge academic research using the same tools widely used in industry.

“We have an integrated approach to academia. One aspect is providing access to tools. This is significantly enhanced through the campus wide license. The other important aspect is to help in the usage of tools by professors and students. A team of technical evangelists works with professors to help them incorporate tools into the courses, and also drives student interest through project work and student competitions.

“One challenge we hear is that software tools that are bought by colleges do not get used sometimes. As the ‘campus wide license’ is an annual term license, it keeps people honest on both sides (institute and software supplier) as the license needs to be renewed annually and will not be renewed if the usage is not good.

“We have been promoting the campus wide license for the last three years, and it has really picked up over the last 12 months. Today we have over 50 institutes with the campus wide license and this would grow to 90 by the end of 2017. We have a Big Hairy Audacious Goal (BHAG) of having 500+ institutes on campus license model by 2020.

Tools for embedded vision
MathWorks also provides software tools for embedded vision. Rao said: “Vision is a huge area of interest. We are providing tools such as Computer Vision, which use deep learning techniques to gather insight from image and video data.

“Image and video applications are being leveraged by all industries today – automotive, aerospace, medical, consumer electronics, industrial equipment verticals. This is critical in safety critical applications such as ADAS or automated driving. We can share an example from Scania where they used MathWorks tools for a safety critical application such as Advanced Emergency Braking System which involved sensor fusion of both radar and camera sensor data.”

How can machine builders prepare for IIoT? Rao said: “We are doing things in Industry 4.0! Data analytics and sensor analytics are focus areas for us. We are working with several industrial equipment customers on predictive maintenance.

“We also work with start-ups, and are seeing a huge interest. We have a start-up program, where our products are offered at a big discount. A lot of the start-ups that we are working with are in medical devices, aerospace and automotive “We provide a combination of our products and services for the start-ups. The value from MATLAB and Simulink is immense.

The go-to-market strategy is three-pronged:
* Commercial customers – we work with the commercial customers in areas of sensor analytics and Model based design to help them develop better products

* Academic Institutions – working with engineers. Making sure they are trained on industry standard tools like MATLAB

* Start-up-ups – where we offer them special price, services and mentorship.

This March, MathWorks announced the release 2017a of the MATLAB and Simulink Product Families. Rao said: “We have a new release 2017b, that will be out in October. The release adds new important deep learning capabilities that simplify how engineers, researchers, and other domain experts design, train, and deploy models.”

ROHM intros Trench SiC MosFET to make renewable energy affordable

Posted on Updated on

ROHM India has introduced the Trench SiC MosFET technology to make renewable energy affordable. The next step will be innovations for the local automotive industry.

Power electronics is now enabling renewable energy harvesting. Increasing rural-electrification, adoption of home appliances, industrialization and population is bringing more pressure on the grid, and the power generation capacity.

image025India will be the largest importer of coal, natural gas and oil by 2040. The focus on renewable energy has gone up, leading to increased generation and decreased losses. Smart grid will enhance the efficient distribution of power.

Simlife Electric Pvt Ltd introduced the GAN2000, India’s first hybrid battery backed grid-tie solar power generation system, a combination of grid-tie and off-grid. It is designed, developed and manufactured in India. Power electronics reduces the cost/kW, and enables higher switching frequencies, magnetics and SiC.

Making energy affordable
Energy can be made affordable and achieved by extraction of power from multiple sources that are efficient and cost effective. The power conversion is made more efficient and is always available. It is also less resource intense. ROHM recommends SiC Trench MosFETs for high-power applications.

Rohm’s 3G SiC Trench MOS improves performance. The SiC MosFET is a near ideal switch resulting in low overall losses. Using the SiC reduces the overall system cost. High reliability of SiC improves system reliability.Rohm1

As for the future trends for wide-band gap (WBG) semiconductors, 10X growth is expected for WBG products by 2023! Dominant space:s are the SiC = 600V and GaN = 600V. Major growth areas are EV/HEV, chargers, solar, industrial drives.

Applications such as solar/wind power, industrial equipment, EV/HEV, large-scale data center servers, and home electronics/AC benefit from the use of SiC.

ROHM Semiconductor India Pvt Ltd (RSI) a subsidiary of ROHM Co. Ltd, Kyoto, Japan, announced an array of power solutions like SiC, IGBT, and gate drivers, for improving the power conversion efficiency. These products are intended to meet the harsh condition of India’s rapidly growing power infrastructure.

The improvement in size and efficiency owing to the adoption of the power solutions from RSI, like gate drivers, trench SiC MOSFETs, and IGBTs, play a vital role in enabling small scale and distributed power plants for tapping solar and wind energy. A ~2 percent increase in efficiency along with the reduced cooling requirements can bring in a considerable cost saving for the end customers, besides improving the reliability of the power converters.

This will help bridge the demand supply gap, which is “more from less, for more”, thus reaching more people. The distributed power generation, besides reducing a huge burden on our grid, reduces the transmission and distribution losses.

ROHM’s power solutions include a broad range of power devices, IGBT, SiC, besides Silicon MOSFET and gate drivers designed to achieve improved efficiency in high power applications.

Britto Edward Victor, Design Centre-head, ROHM Semiconductor India, said: “Our focus is on home appliances, industrial power and automotive. We now work on power conditioners. We released the silicon carbide (SiC) MOSFET. It is also used in rural electrification. Rohm Semiconductor India has a design center in Bangalore. The design center has an Application Engineering group to provide technical support to India customers.”

Artificial Machines enables smart product innovation with strategic partnerships with Mentor Graphics and Qualcomm

Posted on Updated on

There are a lot of things in electronics manufacturing happening across, in China, Japan, Korea and Taiwan. When that activity in electronics manufacturing happens in India, it is a matter of great pride for the country. The company bringing pride to India is the Pune-based Artificial Machines.

Artificial Machines was founded in April 2008. Headquartered in Pune, India, it has sales office on Wall Street, New York, USA. It is focusing on IoT, smart machine design, and artificial intelligence (AI).

Manish Buttan, CEO, Artificial Machines, said: “We are one of the oldest IoT companies. We work with automotive and electronics companies. The HAZE platform was developed in 2015. We are focused on converting traders to makers. We are designing over 20 product lines in consumer electronics.

“We are currently building the TV platform for Videocon and the Videocon Aryabot 2 AC, which is in progress right now. For Eureka Forbes, we have done a few water purifiers. We are also working on a few products for Tata Housing including a door phone, smart lock, smart camera, fire safety, and several products for Godrej & Boyce.

“We are a design house, and designers at the PCB level. We make everything in India. The idea is to develop the IP. We can connect anything built on the HAZE platform. For example, a video doorphone has built-in VoIP. We are lowering the automation costs as well.”

What is HAZE?
Artificial Machines has developed the HAZE platform. The HAZE platform is not just an IoT platform. It is a smart product innovation platform.

“We will develop artificial intelligence for cars by 2018. We will also build the entire electronics for the cars,” Buttan added.

Artificial Machines has partnered some of the largest OEMs in India that have licensed the HAZE platform to develop a range of products in India. Buttan said: “As of today, we have five licensees – Eureka Forbes, Godrej & Boyce. Tata Housing, Usha International, and Videocon. Their products will soon show the ‘Powered by HAZE’ Logo.

“All HAZE Platform Intellectual Property belongs to Artificial Machines. Our customers are promoting the platform by adding our logo to their products. The HAZE License requires that the primary components be purchased through us. The HAZE IP is free to license for customers and we charge a subsidized customization fee for modify HAZE for their requirements. We are heading into a $20-$50 million turnover over the next five years.

“PCBs are being made in India. Also, in China. With Usha, we are doing smart fans, air coolers and lighting brands. With Godrej & Boyce we are doing refrigerators, ACs, smart washing machines, etc.

Over the years, Artificial Machines has participated in developing products such as the Mahindra XUV BlueSense App, Savant home automation System, Vidyo conference platform, Lifeshield home security system, Brookstone grill monitoring app / baby monitor app, and the Videocon Aryabot AC, which are in the market.

Products to be launched include a few water purifiers, smart refrigerator, and next-gen air conditioners. Products that will be completing this year include air coolers, smart lighting, Android TVs, Android refrigerators, video door phones, smart locks, smart cameras, fire safety equipment, and washing machines.

Roles of Mentor Graphics and Qualcomm
What role does Mentor Graphics play in all of this? Mentor Graphics came into the picture, and gave Artificial Machines their tools. Mentor PCB development and validation process involves over 75 processes of reliability. Mentor Graphics has strategically partnered with Artificial Machines and invested EDA tools worth $15 million.

This makes Artificial Machines have the world’s best design tools in PCB design, embedded, automotive, chip design, and manufacturing validation.

Buttan said: “We have a strategic partnership with Mentor Graphics. All of the tools are available to traders. We also have an agreement with Qualcomm. Each OEM can innovate their ideas.”

Qualcomm has been very supportive with the Snapdragon chip licensing to Artificial Machines. Microchip is a premium partner for low-and mid-segment processors. All of these give Artificial Machines some of the widest range of processors and platforms to work with – Bare Metal, Linux and Android. This makes it easy for customers to build Android hardware with HAZE licensing.

Artificial Machines also works closely with several large global manufacturers. Having in-house Valor manufacturing validation tools allows it to provide pre-validated hardware for manufacturing.

Thanks to Mentor Graphics for introducing me to this company.

Mentor unveils Veloce Strato emulation platform with highest RoI

Posted on Updated on

Mentor Graphics Corp. recently announced the Veloce StratoM emulation platform.

The Veloce Strato platform is Mentor’s third generation data-center friendly emulation platform. It is said to be the only emulation platform with full scalability across both software and hardware. Mentor is also launching the Veloce StratoM high-capacity emulator and Veloce Strato OS enterprise-level operating system.

So, how is the Veloce StratoM platform suitable for data centers than previous version?

According to Montu Makadia, one of the worldwide ATM – Emulation experts at Mentor Graphics ; with the Veloce StratoM emulator, there are no major changes to the lab requirements.

There is the same footprint, lower total power consumption, and lower total cooling requirement (air-cooled, air extraction from top). There is an added flexibility on the door and panel (new in Veloce Strato) that makes system maintenance easier.

The Veloce Strato Platform plans for highest effective capacity (up to 15BG) available. Does it really go up to 15BG? If yes, where are the test results?

According to a Mentor Graphics’ spokesman, as of now, no test results are required. Connecting emulators via a sophisticated connection method is common for Veloce. In this case, the Veloce Strato Link can be used to connect multiple Veloce StratoM emulators to reach 15BG capacity.

“We have installations at companies that will not allow us to talk about them by name. These are large, multinational companies with very advanced verification and validation requirements. The installations have gone extremely well and deployment is underway and happening without issue,” the spokesman added.

Mentor is saying there will be a roadmap to 15BG over five years and beyond? What if others come up with a faster system in between?

The spokesperson said: “We can’t predict what other emulation vendors will do in the next five years. We have done our competitive research and believe that we are uniquely positioned to have, both, the largest capacity available in 2021, as well as the emulation platform with the highest RoI.”

Finally, how is the Veloce Strato OS enterprise-level operating system a step above the earlier OS?

The Veloce Strato OS is the centerpiece of the technology for the overall Veloce architecture. The Veloce operating system basically enables three things: The first is the primary core compiler flow. When you use an emulator, you need to compile the design. You synthesize and partition, and move from an RTL/netlist to something that is mapped to the hardware (P&R).

The Veloce Strato OS delivers an integrated, fully automated, single step compilation flow with about 3x faster compilation time and with a 100 percent compile success rate. The compilation time and a 100 percent compile success is one of the key differentiators compared to an FPGA-based emulator.


The OS enables all the use models of verification with a unified compilation, runtime and debug flow. That includes traditional ICE (physical targets-based stimulus), the other virtual use models (SW device models) and testbench acceleration (SW test benches, UVM, SV, SC, TLM, etc.).

The third unique attribute is advanced debug. In addition to the waveform support, it supports Livestream to view a set of important signals, key register for long emulation runs as tests are progressing and Veloce’s unique ‘save and restore’ replay to restore emulation sessions instantaneously at a specified time point for detailed debug activities without re-running the emulation from the beginning.