Self-driving cars pushing boundaries of IC testing: Nilanjan Mukherjee, Mentor

Posted on Updated on

Nilanjan Mukherjee, Engineering director, Tessent, Mentor A Siemens Business, presented the opening keynote on day 2 of the ITC 2018, on self-driving cars and how they are pushing the boundaries of IC testing.

IMG_20180724_112645Automotive ICs will grow from 7.4 percent in 2017 to 9.3 percent by 2021. New entrants are attracted by new revenue opportunities. Leading auto makers are planning to launch self-driving cars, such as Tesla, GM, Hyundai, Renault-Nissan, Toyota, Volvo, etc., as per the Boston Consulting Group. According to McKinsey & Co., 57 percent of customers globally, trust self-driving cars.

Increasing detection capabilities require higher compute performance. Higher compute requirements are accelerating the process node requirements. For the next decade, the number of gates will double every 2 years. There will be 2x more compression every 2 years, just to maintain the test cost. There is a huge increase in transistor processing, and trends will continue with the future 5nm/3nm nodes. Further scaling will require density increase, in addition to the pitch scaling.

Test requirements ensure that semiconductor devices remain defect free. They should also ensure that any new defects are quickly detected throughout the device’s operational lifecycle. Low defective parts per billion – the implications of defective parts in automotive apps, are more severe than in consumer apps. The defect coverage should cover all circuitry.

More defects and lower DPPB require better coverage. There are complete defect excitation considerations. The defects are prioritized by their physical likelihood.

Automotive grade ATPG provides a complete set of critical area-based fault models for manufacturing tests. Cell-aware test benefits are well documented. Additional user–defined fault models (UDFM) are targeting inter-cell defects and interconnect bridges and open defects. We have to find ways to reduce the test time for analog parts.

Typically low coverage is 70-90 percent for analog parts. Fault simulation allows one to determine portions not being tested. There is a need to eliminate the manual FMEDA metric estimates that are required for ISO-26262. The fault simulator can report the metrics automatically, eliminating untolerated faults, and achieving higher ASIL rating.

There are multiple modes of in-system testing. Key-on tests have very little time budget. Limited functions are tested. Key-off tests see comprehensive testing. The budget is 10x times that of key-on tests. Finally, online tests are challenging. They are periodic and incremental.

Mission-mode controller is the in-system test controller. It automates communication between the test instruments and the service processor.

The new VersaPoint test point technology gives 2-4 percent SAF coverage vs. LBIST (logic built-in self test) test points. That’s 2X-3X reduction in test time at 90 percent coverage. It also reduces deterministic ATPG pattern counts by 2-4X.

VersaPoint test points with observation during shift helps in fast in-system logic monitoring. This helps on an average to reduce the test times by 3-4X.

Requirements for future in-system test solutions:
* Able to apply any type of test.
* Able to add, modify and update the in-system tests during the entire lifecycle of an IC.
* Minimal system memory and incremental data.

Programmable deterministic BIST for FuSa (functional safety) include two levels of highly compressed patterns. This reduces the memory required to store the patterns on the chip.

In the non-destructive memory BIST, there are traditional memory BIST constraints. Memory is tested in small bursts of activity by making sure that the original contents of the memory is restored after test.

Austemper acquisition by Siemens brings solutions across all areas. It is a completely functional safety solution. There is safety analysis, so you can design an automotive for safety. It also has safety verification, and multi-domain fault injection, providing evidence to achieve ASIL compliance.

Automotive ICs have redefined the standard for quality of manufacturing.

Advertisements

One thought on “Self-driving cars pushing boundaries of IC testing: Nilanjan Mukherjee, Mentor

    S Uma Mahesh said:
    July 29, 2018 at 7:24 pm

    Insightful, as always sir!

    Like

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.